DSpace

National Tsing Hua University Institutional Repository >
理學院 - College of Science >
化學系 >
博碩士論文 - CHEM Theses >

Please use this identifier to cite or link to this item: http://ir.lib.nthu.edu.tw/handle/987654321/32055

Full metadata record

DC FieldValueLanguage
dc.contributor.advisor陳益佳zh_TW
dc.contributor.advisorI-Chia Chenen
dc.contributor.author齊三慧zh_TW
dc.contributor.authorSan-Hui Chien
dc.creator齊三慧zh_TW
dc.creatorSan-Hui Chien
dc.date2000zh_TW
dc.date.accessioned2009-12-21T19:24:12Z-
dc.date.available2009-12-21T19:24:12Z-
dc.date.issued2000zh_TW
dc.identifier.urihttp://ir.lib.nthu.edu.tw/handle/987654321/32055-
dc.description碩士zh_TW
dc.description國立清華大學zh_TW
dc.description化學系zh_TW
dc.descriptionNH890065039en
dc.description.abstract本篇論文利用電子密度泛函理論方法研究雜環喹喏啉系列分子以及o-xylene前驅物benzosultine,以B3LYP、B3P86與B3PW91等方法配合6-31G(d,p)與6-31+G(d)基底計算得到雜環喹喏啉分子之基態結構、能量與垂直躍遷位置。依據計算結果發現,雜環喹喏啉分子之基態結構於單重態時具有鄰菎雙烯(o-QDM)結構,於三重態時則具有雙自由基結構。配合sultine分子之雷射瞬態光解實驗結果比較,指認中間體o-xylene於370 nm處有一單重態之躍遷;2,3-naphthoquinodimethane於420 nm與520 nm處分別有一三重態與單重態之躍遷;2,3-quinoxalinodimethane則於280 nm、350 nm、420 nm三處有三重態之躍遷。 根據與實驗比較結果以及前驅物之計算,發現不同結構之喹喏啉分子具有不同之反應特性;由反應機制動力學計算,進一步預測雜環喹喏啉分子之光解反應生成路徑,推測未含氮之喹喏啉分子,如o-xylene分子,應依循單重態位能面進行分解反應;而含氮之喹喏啉分子,如2,3-quinoxalinodimethane,則應由跨系統穿越(ISC)經三重態位能面分解生成。zh_TW
dc.description.abstractThe heterocyclic quinolin molecules and the precursor have been studied by using the Density Functional Theory (DFT). The geometry and energy of ground state and the vertical transition of excited states are calculated and optimized by the three methods, B3LYP, B3P86 and B3PW91, via the two basis set, 6-31G(d,p) and 6-31+G(d). According to the calculation results, the quinolin molecules are kept o-QDM-like structure within singlet electronic ground state and biradicl-liked structure within triplet ground state. Comparing with the laser flash-photolysis study to the sultines, to assign o-xylene has an S → Sn transition at 370 nm, 2,3-naphthoquinodimethane has an S → Sn transition at 420 nm and a T → Tn transition at 520 nm, and 2,3-quinoxalinodimethane has three T → Tn transition near 280 nm, 350 nm and 420 nm individually. Through the comparison by the experiments and the calculation for the precursor, benzosultine, we discovered that the quinolin molecules with different structure hold dissimilar reaction nature. By reaction mechanism kinetics calculation, the photodissociation process for the heterocyclic quinolin molecules has been figured: the photodissociation of the quinolin molecule without containing the nitrogen atoms, such as o-xylene, should move around the singlet potential surface and the nitrogen-contained quinolin molecule, like 2,3-quinoxalinodimethane, would process the dissociation pathway via the triplet potential surface by inter-system crossing (ISC).en
dc.language.isozh_TWzh_TW
dc.relation.isbasedon1 Cava, M. P.; Napier, D. R. J. Am. Chem. Soc. 1957, 79, 1701. 2 Martín, N.; Seoane, C.; Hanack, M. Org. Prep. Proc. Int. 1991, 23, 237. 3 Chou, T. S. Rev. Heteroatom. Chem. 1993, 8, 65. 4 Collier, S. J.; Storr, R. C. In Progress in Heterocyclic Chemistry, Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon: New York, 1998; Vol. 10, pp25-48. 5 Nemoto, H.; Fukumoto, K. Tetrahedron 1998, 54, 5425. 6 Egushi, S.; Ohno, M.; Kojima, S.; Koide, N.; Yashiro, A.; Shirakawa, Y.; Ishida, H. In Recent Advances in the Chemistry of Fullerenes and Related Materials, Proceedings of the Electro-chemical Society; 1996, Vol. 3, p1233. 7 Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98, 2527. 8 Korth, H. G.; Sustmann, R. In Free Radicals in Biology and Environment; NATO ASI Series 3, 1997; Vol. 27, pp 331-349. 9 Kametani, T; Nemoto, H. Tetrahedron 1981, 37, 3. 10 Durst, T.; Huang, J. C.; Sharma, N. K. Can. J. Chem. 1978, 56,512. 11 巫淑麗, 碩士論文, 交通大學, 1999. 12 陳俊欣, 碩士論文, 交通大學, 2000. 13 Manoharan, M.; Proft, F. D.; Geerlings, P.; J. Chem. Soc., Perkin Trans. 2, 2000, 1767. 14 Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795. 15 Eade, R. H. E.; Robb, M. A. Chem. Phys. Lett. 1981, 83, 362. 16 Schlegel, H. B.; Robb, M. A. Chem. Phys. Lett. 1982, 93, 43. 17 Bernardi, F.; Bottini, A.; McDougall, J. J. W.; Robb, M. A.; Schlegel, H. B. Far. Symp. Chem. Soc. 1984, 19, 137. 18 Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel, H. B. “A Direct Derivative MC-SCF Procedure,” Chem. Phys. Lett. 1996, 250, 373. 19 Frisch, M. J.; Ragazos, I. N.; Robb, M. A.; Schlegel, H. B. “An Evaluation of 3 Direct MCSCF Procedures,” Chem. Phys. Lett. 1992, 189, 524. 20 Hylleraas, E. A. Z. Physik. 1928, 48, 469. 21 Ishida, K.; Morokuma, K.; Komorrnicki, A. J. Chem. Phys. 1977, 66, 2153. 22 Müller, K.; Brown, L. D. Theor. Chim. Acta. 1979, 53,75. 23 Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. 24 Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94,5523. 25 Sakai, S. J. Phys. Chem. A 2000, 104, 11615. 26 Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1974, 96, 3280. 27 Kametani, T.; Honda, T.; Ebisawa, Y.; Ichikawa, H. Tetrahedron 1985, 41, 3643. 28 Chou, C. H.; Trahanovsky, W. S. J. Am. Chem. Soc. 1986, 108, 4138. 29 Trahanovsky, W. S.;Macias, J. R. J. Am. Chem. Soc. 1986, 108, 6820. 30 Wintgens, V.; Netto-Ferreira, J. C.; Casal, H. L.; Scaiano, J. C. J. Am. Chem. Soc., 1990, 112, 2363. 31 Gisin, M.; Wirz, J. Helvetica Chimica Acta, 1976, 59, 2273. 32 Alexandrou, N. E.; Mertzanos, G. E.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A.; Zachariou, P. Tetrahedron Lett. 1995, 36, 6777. 33 Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. 34 Kohn, W.; Sham, L. J.; Phys. Rev. 1965, 140, A1133. 35 Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Chem. Phys. Lett. 1988, 199, 557. 36 Johnson, B. G.; Frisch, M. J. J. Chem Phys. 1994, 100, 7429. 37 Johnson, B. G.; Frisch, M. J. Chem. Phys. Lett. 1993, 216, 133. 38 Stratmann, R. E.; Burant, J. C.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1997, 106, 10175. 39 Salahub, D. R.; Zerner, M. C. Eds., The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) 40 Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989) 41 Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. 42 Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. 43 Labanowski, J. K.; Andzelm, J. W. Eds., Density Functional Methods in Chemistry (Springer-Verlag, New York, 1991). 44 Sosa, C.; Lee, C. J. Chem. Phys. 1993, 98, 8004. 45 Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280. 46 Scuseria, G. E. J. Chem. Phys. 1992, 97, 7528. 47 Becke, A. D. J. Chem. Phys. 1992, 97, 9173 48 Becke, A. D. J. Chem. Phys. 1992, 96, 2155. 49 Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1992, 197, 499. 50 Stephens, P. J.; Devlin, F. J.; Ashvar, C. S.; Chabalowski, C. F.; Frisch, M. J. Faraday Discuss. 1994, 99, 103. 51 Stephens, P. J.; Devlin, F. J.; Frisch, M. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98, 11623. 52 Ricca, A.; Bauschlicher Jr., C. W. J. Phys. Chem. 1995, 99, 9003. 53 Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69. 54 Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571. 55 R. McWeeny and G. Dierksen, J. Chem. Phys. 49, 4852 (1968). 56 Thomas, L. H. Proc. Camb. Phil. Soc. 1927, 23, 542. [Reprinted in March (1975).] 57 Fermi, E. Rend. Accad. Lincei 6, 1927, 602. 58 Fermi, E. Z. Phys. 1928, 48, 73. 59 Fermi, E. Rend. Accad. Lincei 7, 1928, 342. 60 March, N. H. Self-Consistent Fields in Atoms, Oxford, Pergamon, 1975. 61 Kohn, W. Phys. Rev. Lett. 1983, 51, 1596. 62 Kohn, W. Phys. Rev. A 1986, 34, 737. 63 Kohn, W.; Vashishta, P. Theory of he Inhomogenous Electron Gas (Lundqvist, S. and March, N.H., eds.), New York, Plenum, 1983, 79. 64 Sham, L. J.; Computational Methods in Bond Theory (Marcus, P.J., Janak, J.F., and Williams, A.R., eds.), New York, Plenum, 1971, 458. 65 Sham, L. J. Phys. Rev. B 1985, 32, 3876. 66 Sham, L. J. Int. J. Quantum Chem.: Quantum Chem. Symp. 1986, 19, 491. 67 Sham, L. J.; Schlüter, M. Phys. Rev. B 1985, 32, 3883. 68 Sham, L. J.; Schlüter, M. Phys. Rev. Lett. 1988, 60,1582. 69 Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry. New York: Macmillan, 1982. 70 Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974). 71 Nyden, M. R.; Petersson, G. A. J. Chem. Phys. 1981, 75, 1843. 72 Burke, K.; Perdew, J. P.; Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale and M. P. Das (Plenum, 1998). 73 Perdew, J. P. in Electronic Structure of Solids ’91, Ed. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) 11. 74 Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46. 75 Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48. 76 Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533. 77 Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664. 78 83 79 Gill, P. M. W. Mol. Phys. 1996, 89, 433. 80 Vosko, S. H.; Wilk, L.; Nusair, M. Canadian J. Phys. 1980, 58,1200. 81 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. 82 Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. 83 Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048. 84 Perdew, J. P. Phys. Rev. B 1986, 33, 8822. 85 Becke, A. D. J. Chem. Phys. 1996, 104, 1040. 86 Becke, A. D. J. Chem. Phys. 1993, 98, 5648. 87 Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622. 88 Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537. 89 Adamo, C.; Barone, V. Chem. Phys. Lett. 1997, 274, 272. 90 Gaussian 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. 91 Matsuzawa, N. N.; Ishitani, A.; Dixon, D. A.; Uda, T. J. Phys. Chem. A 2001, 105, 4953. 92 Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vögtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717. 93 Boulet, P.; Chermette, H.; Daul, C.; Gilardoni, F.; Rogemond, F.; Weber, J.; Zuber, G. J. Phys. Chem. A 2001, 105, 885. 94 Shiotani, M.; Isamoto, N.; Hayashi, M.; Fängström, T.; Lunell, S. J. Am. Chem. Soc. 2000, 122, 12281. 95 鄭佩紋, 碩士論文, 清華大學, 2001. 96 陳良吉, 碩士論文, 交通大學, 1995. 97 儲高昇, (鍾文聖實驗室未發表之結果), 交通大學, 2001. 98 Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. 99 Manoharan, M.; Proft, F. D.; Geerlings, P. J. Chem. Soc., Perkin Trans. 2, 2000, 1767. 100 Merkel, P. B.; Kearns, D. R.; J. Am. Chem. Soc. 1972, 94, 1030, 7244. 101 Hsu, C. -P.; Hirata, S.; Head-Gordon, M. J. Phys. Chem. A 2001, 105, 451. 102 Lim, E. C. “Photophysics of gaseous aromatic molecules: excess vibrational energy dependence of radiationless processes”, 1997.zh_TW
dc.subject雜環喹喏啉zh_TW
dc.subject電子密度泛函理論zh_TW
dc.subjecto-QDMen
dc.subjecto-xyleneen
dc.subjectbenzosultineen
dc.subjectnaphthoquinodimethaneen
dc.subjectquinoxalinodimethaneen
dc.subjectdensity functional theoryen
dc.title電子密度泛函理論研究雜環喹喏啉及其前驅物基態結構、能量與垂直躍遷位置計算zh_TW
dc.title.alternativeUsing Density Functional Theory to Study the Optimized Geometry and Energy of Ground State and the Vertical Transition of Excited States for the Heterocyclic Quinolin and the Precursoren
Appears in Collections:博碩士論文 - CHEM Theses

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback