DSpace

National Tsing Hua University Institutional Repository >
工學院 - College of Engineering >
化學工程學系 >
博碩士論文 - CHE Theses >

Please use this identifier to cite or link to this item: http://ir.lib.nthu.edu.tw/handle/987654321/34165

Full metadata record

DC FieldValueLanguage
dc.contributor.advisor王茂齡zh_TW
dc.contributor.advisor張榮語zh_TW
dc.contributor.advisorMaw-Ling Wangen
dc.contributor.advisorRong-Yeu Changen
dc.contributor.author謝育民zh_TW
dc.contributor.authorYu-Ming Hsiehen
dc.creator謝育民zh_TW
dc.creatorYu-Ming Hsiehen
dc.date2002zh_TW
dc.date.accessioned2009-12-21T21:34:58Z-
dc.date.available2009-12-21T21:34:58Z-
dc.date.issued2002zh_TW
dc.identifier.urihttp://ir.lib.nthu.edu.tw/handle/987654321/34165-
dc.description博士zh_TW
dc.description國立清華大學zh_TW
dc.description化學工程學系zh_TW
dc.descriptionNH910063010en
dc.description.abstract中 文 摘 要 本研究的目的是利用相間轉移觸媒進行有機化合物之二氯環丙烷化反應(dichlorocyclopropanation)。反應系統是利用不同的烯烴(olefins)做為有機相反應物,在氯仿/鹼性水溶液中,加入少量的相間轉移觸媒,藉由二氯碳烯(dichlorocarbene)的生成,進行加成反應。二氯環丙烷化合物可廣泛應用於醫療用途、香水製造及農業化學等領域。 本論文的內容,主要是利用相間轉移觸媒催化技術進行烯烴的二氯環丙烷化反應。探討利用傳統相間轉移觸媒、磺酸兩性銨鹽(3-(N,N-trialkylammonio)propansulfonate)及新穎多活性基之季銨鹽相間轉移觸媒(multi-site phase-transfer catalyst),在氯仿及鹼性水溶液的條件下,進行二氯環丙烷化合物的合成、反應機構、動力學的行為及不同操作條件對反應的影響。 利用傳統季銨鹽相間轉移觸媒,進行二氯環丙烷化反應的部分,本文選用1,7-辛二烯為有機相反應物,以氯化四丁基銨(TBAC)及氯化苯基三乙基銨(BTEAC)為相間轉移觸媒,分別於低鹼量(NaOH 30 % w/w)及高鹼量(NaOH 50 % w/w)進行反應。在攪拌速率、反應溫度、觸媒使用量、反應物使用量及有機溶劑使用量等不同的反應變因下,實驗結果顯示,低鹼量時可以以三次反應速率式(third-order rate law)表示,而高鹼量時可以擬一次反應速率式(pseudo first-order rate law)進行數據的處理。造成此種差異的原因,及反應過程中所產生的各種現象,於文中有深入的探討與分析。 本文較特殊之處,是選用二甲基辛基胺(dimetyloctylamine) 與1,3-丙基磺內酯(1,3-propanesultone)所合成的磺酸兩性銨鹽(3-(N,N-dimetyloctylammonio)propansulfonate,S-8),應用於二氯環丙烷化合物的合成,可以得到比傳統相間轉移觸媒更佳的催化效果。而且,首次利用三乙胺(triethylamine)及二氯對二甲苯(α,α’-dichloro-p-xylene)為反應物,合成具水溶性之雙活性基相間轉移觸媒(1,4-bis(triethylmethylammonium)benzene dichloride,DC-X),具有合成方法簡單、純化容易等優點。另本文以不同三級胺所合成的雙活性基相間轉移觸媒,應用於各種單烯烴及雙烯烴之二氯環丙烷化反應的催化效果,進行比較並提出合理的解釋。 為了探討新穎相間轉移觸媒的反應機構及最佳的反應條件,文中選用磺酸兩性銨鹽(S-8)應用於1-辛烯(1-octene)及雙活性基相間轉移觸媒(DC-X)應用於4-烯基-1-環己烯(4-vinyl-1-cyclohexene)的二氯碳烯加成反應。在動力學的部分,針對觸媒的種類、攪拌速率、反應溫度、鹼量、觸媒使用量及氯仿的使用量等反應變因對反應的影響,進行深入的探討。而且,利用界面反應機構及擬一次反應速率式,可合理解釋反應現象。zh_TW
dc.description.abstractABSTRACT The primary objective of this dissertation is to study the dichlorocyclopropanation of organic compounds by phase transfer catalysis. The phase transfer catalyzed reaction of chloroform and olefins was carried out in an alkaline aqueous solution of NaOH/chloroform two-phase medium. Dichlorocarbene, which is an active species to react with olefins in the organic phase, is generated from the reaction of chloroform, sodium hydroxide and phase transfer catalyst at the interface between two phases. These dichlorocyclopropanes and their derivatives can be used as the pharmaceuticals, perfumery industry and agrochemicals. The primary purpose of this work is to use phase-transfer catalytic technique to synthesize the dichlorocyclopropanes in the two-phase medium by the conventional quaternary ammonium salts, 3-(N,N-trialkylammonio)propansulfonates and the novel multi-site quaternary ammonium salt as the phase transfer catalysts. The synthesizing conditions, reaction mechanism, kinetics and the operation factors which affect the reaction were discussed. In this work, we choose tetrabutylammonium chloride (TBAC) and benzyltriethylammonium chloride (BTEAC) as the conventional phase-transfer catalysts, the dichlorocyclopropanation of chloroform and 1,7-octadiene was carried out in a low and high alkaline aqueous concentration, respectively. A third-order rate law and a pseudo first-order rate law are used to describe the reaction rate at low sodium hydroxide concentration (30 % w/w) and at high sodium hydroxide concentration solution (50 % w/w), respectively. Reasonable explanations of different reaction kinetics and the behavior in the reaction were discussed. 3-(N,N-dimetyloctylammonio)propansulfonate, which could be used to synthesize the dichlorocyclopropanes, was synthesized by dimetyloctyl amine with 1,3-propanesultone. The reactivity of this new compound is more active than those of the conventional phase transfer catalysts. This new synthesized phase transfer catalyst, 1,4-bis(triethylmethylammonium)benzene dichloride (DC-X), which possesses two-site activity, was obtained from the reaction of α,α’-dichloro-p-xylene and triethylamine. The procedure of synthesizing 1,4-bis(triethylammonium)benzene dichloride is simple and easy to purification. The reactivities of synthesizing dichlorocyclopropanes with different novel multi-site phase transfer catalysts and 3-(N,N-alkylammonio)propansulfonates were also discussed in this dissertation. In studying the kinetics, the dichlorocyclopropanation of 1-octene by 3-(N,N- dimethyloctylammonio)propansulfonate (S-8) and 4-viyl-1-cyclohexene by 1,4-bis(triethylmethylammonium)benzene dichloride (DC-X) was carried out in an alkaline aqueous solution of NaOH/chloroform two-phase medium. Kinetics of the reactions such as: effects of the catalysts, agitation speed, temperature, alkaline concentration, amount of catalyst, amount of reactant and volume of chloroform (organic solvent) on the reaction rate were investigated in detail. The pseudo first-order rate law and the interfacial reaction mechanism are well used to explain the reaction behaviors.en
dc.language.isozh_TWzh_TW
dc.relation.isbasedon參 考 文 獻 1. Jarrouse, J. and Hebd, C. R., “The Influence of Quanternary Ammonium Chlorides on the Reaction of Labile Hydrogen Compounds and Chlorine Substituted Chlorine Derivatives”, Seances Acad. Sci., Ser. C232, pp. 1424-1426 (1951). 2. Makosza, M., “Reaction of Organic Anions. XI. Catalytic Alkylation of Indene”, Tetrahedron Letters, 38, pp. 4621-4624 (1966). 3. Hennis, H. E. and Easterly, J. P., “Esters from the Reaction of Alkyl Halides and Salts of Carboxylic Acid”, Ind. Eng. Chem. Prod. Res. Dev., 7, pp. 96-101 (1968). 4. Brandstrom, A. and Gustavii, K., “Ion Pair Extraction in Preparative Organic Chemistry”, Acta, Chem. Scand., 23, pp. 1215-1218 (1969). 5. Starks, C. M., “Phase Transfer Catalysis. I. Heterogeneous Reaction Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J. Am. Chem. Soc., 93, pp. 195-199 (1971). 6. Starks, C. M. and Owens, R. M., “Phase-Transfer Catallysis. II. Kinetic Details of Cyanide Displacement on 1-Halooctanes”, J. Am. Chem. Soc., 95, pp. 3613-3617 (1973). 7. Starks, C.M. and Liotta, C., Phase Transfer Catalysis Principles and Techniques, Academic Press, New York (1978). 8. Hennis, H. E., Easterly, J. P., Collins, L. R. and Thompson, L. R., “Esters from the Reactions of Alkyl Halides and Salts of Carboxylic Acids”, Ind. Eng. Chem. Prod. Res. Dev., 6, pp. 193-195 (1967). 9. Simmons, H. E. and Sam, D. J., “Crown Polyether Chemistry Potassium Permanganate Oxidations in Benzene”, J. Am. Chem. Soc., 94, pp. 4024-4025 (1972). 10. Freedman, H. H., “Industrial Applications of Phase Transfer Catalysis: Past, Present and Future”, Pure & Appl. Chem., 58(6), pp. 857-868 (1986). 11. Scott, P. E., Bradshow, J. S. and Parish, W. W., “Modified Crown Ether Catalysts. 3. Structural Parameter Affecting Phase Transfer Catalysis by Crown Ethers and a Comparison of the Effectiveness of Crown Ethers to That of Other Phase Transfer Catalysts”, J. Am. Chem. Soc., 102, pp. 4810-4815 (1980). 12. Angeletti, E., Tundo, P., Venturello, P. and Trotta, F., “Synthetic Opportunities of Gas-Liquid Phase-Transfer Catalysis”, British Polymer J., 16, pp. 219-221 (1984). 13. Tuno, P., Trotta, F., Moraglio, G. and Ligorati, F., “Continuous-Flow Processes under Gas-Liquid Phase Transfer Catalysis Condition: The Reaction of Dialkyl Carbonates with Phenol, Alcohol; Mercaptans”, Ind. Eng. Chem. Res., 27, pp. 1565-1571 (1988). 14. Regen, S. L., Besse, J. J. and McLick, J., “Solid-Phase Cosolvents. Triphase Catalytic Hydrolysis of 1-Bromoadamantane”, J. Am. Chem. Soc., 101, pp. 116-120 (1979). 15. Mackenzie, W. M. and Sherrington, D. C., “Mechanism of Solid-Liquid Phase Transfer Catalysis by Polymer-Supported Linear Polyether”, Polymer, 21, pp. 791-797 (1980). 16. Jang, S. M. and Shich, T. S., “Phase Transfer Catalytic Process for Preparing Intermediates of Atenolol, Propanol; Their Derivatives”, US Patent 5,290,958 (1994). 17. Abromovici, S. and Sasson, Y., “Sodium Hypochlorite as Oxidant in Phase-Transfer Catalytic System. Part II, Oxidation of Aromatic Alcohols”, J. Mol. Catal., 29, pp. 299-303 (1985). 18. Starks, C. M., “Phase Transfer Catalysis: An Overview”, ACS Symposium Series, No 326, pp. 1-7 (1985). 19. Naik, S. D. and Doraiswamy, L. K. “Phase Transfer Catalysis : Chemistry and Engineering”, AIChE J., 44, pp. 612-646 (1998). 20. Dolling, U. H., Hughes, D. L., Bhattacharya, A., Ryan, K. M., Karady, S., Weinstock, L. M., Grenda, V. J. and Grabowski, J. J., “Efficient Asymmetric Alkylations via Chiral Phase-Transfer Catalysis: Applications and Mechanism”, ACS Symposium Series 326, pp. 67- 81 (1985). 21. O’Donnell, M. J., Bennett, W. D. and Wu, S., “The Stereoselective Synthesis of a-Amino Acids by Phase-Transfer Catalysis”, J. Am. Chem. Soc., 111, pp. 2353-2355 (1989). 22. Tagle, L. H., Diaz, F. R. and Fuenzalida, R., “Polymerization by Phase Transfer Catalysis. 18. Polycarbonates and Polythiocarbonates from Chlorinated Diphenols”, J. M. S. –Pure Appl. Chem., A31, pp. 283-290 (1994). 23. Balakrishnan, T. and Arivalagan, K., “Phase Transfer Catalyzed Free-Radical Polymerization of Acrylonitrile”, J. Poly. Sci. Part A: Poly. Chem., 32, pp. 1909-1914 (1994). 24. Leung, L. M., Chan, W. H., Leung, S. K. and Fung, S. M., “Synthesis of Aliphatic and Aromatic Poly(S-dithiocarbonates) Using a Phase Transfer Catalyst”, J. M. S.- Pure and Appl. Chem., A31, pp. 495-505 (1994). 25. Smith, L. R., “Process for the Preparation of 2-(2-Furyl)Ethanol Amine”, U.S. Patent 4,962,212 (1990). 26. Cutié, Z. G. and Halpern, M. E., “Process for Preparing Phosphothionates and Phosphonates in a Three-Phase System”, U.S. Patent 5,120,846 (1992). 27. Cassar, L., Foa, M. and Gardano, A., “The Use of Phase-Transfer Catalysis in Palladium-Catalyzed Carbonylation of Organic Halides”, J. Organomet. Chem., 121, pp. C55-C56 (1976). 28. Guarini, A and Tundo, P., “Rose Bengal Functionalized Phase-Transfer Catalysts Promoting Photoxidations with Singlet Oxygen. Nucleophilic Displacements on Dioxetanic and Endoperoxidic Intermediates”, J. Org. Chem., 52, pp. 3501-3508 (1987). 29. Ayyangar, N. R., Kumar, S. M. and Srinivasan, K. V., “Facile One-Pot Synthesis of 2,1,3-Benzoxadiazole N-Oxide(Benzofuroxan) Derivatives Using Phase Transfer Catalysis”, Synthesis, pp. 616-618 (1987). 30. Dolling, U. H., “Process Using Achiral Co-Catalyst Promoter for Chiral Phase Transfer Alkylation Process for An Enantiomer of a Substituted Fluorenyloxyacetic Acid”, U.S. Patent 4,605,761 (1986). 31. Schmolka, S. J. and Zimmer, H., “N-Dimethylaminopropylation in a Solid-Liquid Two-Phase System : Synthesis of Chlorpromazine, Its Analogs and Related Compounds”, Synthesis, pp. 29-31 (1984). 32. Neef, G. and Steinmeyer, A., “Synthesis of 23-Oxa-Calcitriol Derivatives”, Tetrahedron Letters, 32, pp. 5073-5076 (1991). 33. Wang, M. L. and Yang H. M., “Kinetic Study of Synthesizing 2,4,6-Tribromophenol Allyl Ether by Phase Transfer Catalytic Reaction”, Ind. Eng. Chem. Res., 29, pp. 522-526 (1990). 34. Kimura, Y. and Regen S. L., “High Dilution via Solid-Liquid Phase-Transfer Catalysis. A Practical Approach to the Synthesis of Macrolides”, J. Org. Chem., 48, pp. 1533-1534 (1983). 35. Solodar, J., “Improved Organic-Inorganic Contact in the Benzoin Condensation”, Tetrahedron Letters., pp. 287-288 (1971). 36. Joshi, G. C., Sinah, N. and Pando, L. M., “Dichlorocarbenegeneation and Reaction in Cationic Micells in Aqueous Phase, Part I : Cycles Addition to Alkenes”, Tetrahedron Letters, pp. 1461-1464 (1972). 37. Makosza, M. and Bialeeka, E., “Reactions of Organic Anions XXXVI, Catalytic Method of Preparation of 1-Chloro-1-phenylthio- cyclopropane Derivative in Aqueous Medium”, Tetrahedron Letters, pp. 4517-4518 (1971). 38. Herriott, A. W. and Picker, D., “On the Mechanism of Phase Transfer Catalysis”, Tetrahedron Letters, 44, pp. 4521-4524 (1972). 39. Rabinovitz, M., Cohen, Y. and Halpern, M., “Hydroxide Ion Initiated Reaction Under Phase Transfer Catalysis Condition; Mechanism and Implication”, Angew. Chem. Int. Ed., Engl., 25, pp. 960-970 (1986). 40. Gordon, J. E. and Kutina, R. E., “On the Theory of Phase-Transfer Catalysis”, J. Am. Chem. Soc., 99, pp. 3903-3909 (1977). 41. Makosza, M. and Wawrzyniewicz, M., “Reactions of Organic Anions. XXIV. Catalytic Method for Preparation of Dichlorocyclopropane Derivatives in Aqueous Medium”, Tetrahedron Letters, 53, pp. 4659-4662 (1969). 42. Starks, C. M., Liotta, C. L. and Halpern, M. Phase-Transfer Catalysis : Fundamentals, Applications and Industrial Perspectives, Chapman & Hall, New York (1994). 43. Doering, W. E. and Hoffmann A. F., “The Addition of Dichlorocarbene to Olefins”, J. Am. Chem. Soc., 76, pp. 6162-6165 (1954). 44. Makosza, M. and Fedorynski, M., “Improved Method of Dibromocyclopropane Derivatives Synthesis in Catalytic Two-Phase Reaction”, 3, pp. 305-309 (1973). 45. Makosza, M., “Two-Phase Reactions in the Chemistry of Carbanions and Halocarbenes – A Useful Tool in Organic Synthesis”, Pure & Appl. Chem., 43, pp. 439-462 (1975). 46. Hiyama, T., Sawada, H., Tsukanaka, M. and Nozaki, H., “β-Hydroxyethyltrialkylammonium Ion as a Selective Phase-Transfer Catalyst for Dihalocyclopropanation”, Tetrahedron Letters, 34, pp. 3013-3016 (1975). 47. Juliá, S. and Ginebreda, A., “A New Method for Generation of Dichlorocarbene Using Solid-Liquid Phase-Transfer Catalysis”, Synthesis, pp. 682-683 (1977). 48. Dehmlow, E. V. and Wilkenloh, J., “Applications of Phase-Transfer Catalysis. Part 29. Dibromocarbene Addition-Hydrolysis Competition in the Presence of Concentration Sodium Hydroxide”, J. Chem. Res. (S), pp. 396-397 (1984). 49. Nomura, E., Taniguchi, H. and Otsuji, Y., “Calixarene-Catalyzed Generation of Dichlorocarbene and Its Application to Organic Reactions : The Catalytic Action of Octopus-Type Calix[6]arene”, Bull. Chem. Soc. Jpn., 67, pp. 792-799 (1994). 50. Wang, M. L. and Yang, H. M., “Kinetic Study of the Synthesis of 4-Bromophenol Allyl Ether by Phase Transfer Catalysis”, J. Mol. Cata., 62, pp. 135-146 (1990). 51. Wu, H. S., “Phase-Plane Modeling of a Liquid-Liquid Phase Transfer Catalyzed Reaction”, Ind. & Eng. Chem. Res., 32, pp. 1323-1327 (1993). 52. Wang, D. H. and Weng, H. S., “Phase Transfer Catalytic Reaction Between N-butyl Bromide and Sodium Phenolate Kinetics of Bi- and Tri-Liquid-Phase Systems”, Chinese Inst. of Chem. Eng., pp. 129-138 (1996). 53. 曾堯宣, “相間轉移觸媒催化技術合成雙醚化合物之研究”, 國立中正大學化學工程研究所博士論文 (2002). 54. Idoux, J. P., Wysocki, R., Young, S., Turcot, J., Ohlman, C. and Leonard, R., “Polymer-Supported ‘Multi-Site’ Phase Transfer Catalysts”, Synth. Commun., 13, pp. 139-144 (1983). 55. Balakkrishnan, T. and Jayachandran, J. P., “Multisite Phase-Transfer Catalyst for Organic Transformations”, ACS Symposium Series 659, pp. 277-292 (1997). 56. Parham, W. E. and Schweizer, E. S., Halocyclopropanes from Halocarbenes, Organic Reactions, 13, John Wiley & Sons, pp. 55-90 (1963). 57. Kirmse, W., Carbene Chemistry, Academic Press, New York (1971). 58. 陳威宏, “以磺酸兩性銨鹽合成縮醛相間轉移觸媒催化反應之研究”, 國立中正大學化學工程研究所碩士論文 (2000). 59. 陳漢翔, “磺酸兩性銨鹽應用於不同相間轉移觸媒催化反應系統 之研究”, 國立中正大學化學工程研究所碩士論文 (2002). 60. 王春傑, “利用磺酸兩性銨鹽與季銨鹽於相間轉移觸媒催化丙烯化反應之研究”, 國立中正大學化學工程研究所碩士論文 (2002). 61. Solaro, R., D’Antone, S. and Chiellini, E., “Heterogeneous Ethylation of Phenylacetonitrile”, J. Org. Chem., 45, pp. 4179-4183 (1980). 62. Balakkrishnan, T. and Jayachandran, J. P., “New ‘Multi-Site’ Phase Transfer Catalyst for the Addition of Dichlorocarbene to Styrene”, J. Chem. Soc. Perkin Trans. 2, pp. 2081-2085 (1995). 63. Jayachandran, J. P. and Wang, M. L., “A New Phase Transfer Reagent for the Addition of Dichlorocarbene to Olefins Under Mild PTC Conditions”, Synth. Comm., 29, pp. 4101-4112 (1999). 64. Jayachandran, J. P. and Wang, M. L., “Cycloalkylation of Phenylacetonitrile With 1,4-dibromobutane Catalyzed by Aqueous Sodium Hydroxide and a New Phase Transfer Reagent, Dq-Br”, Appl. Cata. A, 198, pp. 127-137 (2000). 65. Hine, J., “Carbon Dichloride as an Intermediate in the Basic Hydrolysis of Chloroform. A Mechanism for Substitution Reactions at a Saturated Carbon Atom”, J. Am. Chem. Soc., 72, pp. 2438-2445 (1950). 66. Pilego, J. R. and Almeida, W. B., “Reaction Paths for Aqueous Decomposition of CCl2”, J. Phys. Chem., 100, pp. 12410-12413 (1996). 67. Uchiyama, Y., Kitamori, T. and Sawada, T., “Role of the Liquid/Liquid Interface in a Phase-Transfer Catalytic Reaction As Investigated by In Situ Measurements Using the Quasi-Elastic Laser Scattering Method”, Langmuir, 16, pp. 6597-6600 (2000). 68. Magarian, R. A. and Pento, J. T., “gem-Dichlorocyclopropanes as Antitmor Agents”, U.S. Patent 5,397,802 (1995). 69. Blume, G. and Muller, H. O., “1-Phenyl- and Benzyl-2,2-dichloro- cyclopropanes as Scents”, U.S. Patent 4,292,210 (1981)zh_TW
dc.subject相間轉移催化反應zh_TW
dc.subject二氯環丙烷化反應zh_TW
dc.subject磺酸兩性銨鹽zh_TW
dc.subject多活性基相間轉移觸媒zh_TW
dc.subjectphase transfer catalysisen
dc.subjectdichlorocyclopropanationen
dc.subject3-(N,N-trialkylammonio)propansulfonateen
dc.subjectmulti-site phase-transfer catalysten
dc.title利用相間轉移觸媒催化反應合成二氯環丙烷化合物之研究zh_TW
dc.title.alternativeSTUDY ON THE SYNTHESIS OF DICHLOROCYCLOPROPANES BY PHASE TRANSFER CATALYSISen
Appears in Collections:博碩士論文 - CHE Theses

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback